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Hypoxia-inducible factor 1 (HIF-1) regulates the transcription of many genes involved in key aspects of

cancer biology, including immortalization, maintenance of stem cell pools, cellular dedifferentiation,

genetic instability, vascularization, metabolic reprogramming, autocrine growth factor signaling,

invasion/metastasis, and treatment failure. In animal models, HIF-1 overexpression is associated with

increased tumor growth, vascularization, and metastasis, whereas HIF-1 loss-of-function has the

opposite effect, thus validating HIF-1 as a target. In further support of this conclusion,

immunohistochemical detection of HIF-1a overexpression in biopsy sections is a prognostic factor in

many cancers. A growing number of novel anticancer agents have been shown to inhibit HIF-1 through a

variety of molecular mechanisms. Determining which combination of drugs to administer to any given

patient remains a major obstacle to improving cancer treatment outcomes.
Intratumoral hypoxia
The majority of locally advanced solid tumors contain regions of

reduced oxygen availability [1]. Intratumoral hypoxia results

when cells are located too far from a functional blood vessel for

diffusion of adequate amounts of O2 as a result of rapid cancer cell

proliferation and the formation of blood vessels that are structu-

rally and functionally abnormal. In the most extreme case, O2

concentrations are below those required for survival, resulting in

cell death and establishing a selection for cancer cells in which

apoptotic pathways are inactivated, anti-apoptotic pathways are

activated, or invasion/metastasis pathways that promote escape

from the hypoxic microenvironment are activated. This hypoxic

adaptation may arise by alterations in gene expression or by

mutations in the genome or both and is associated with reduced

patient survival [1].

Hypoxia-inducible factor 1 (HIF-1)
The expression of hundreds of genes is altered in each cell exposed

to hypoxia [2,3]. Many of these genes are regulated by HIF-1. HIF-1

is a heterodimer formed by the association of an O2-regulated HIF-

1a subunit with a constitutively expressed HIF-1b subunit [4]. The
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structurally and functionally related HIF-2a protein also dimerizes

with HIF-1b and regulates an overlapping battery of target genes

[5,6]. Under nonhypoxic conditions, HIF-1a (as well as HIF-2a) is

subject to O2-dependent prolyl hydroxylation [7–9] and this mod-

ification is required for binding of the von Hippel–Lindau tumor

suppressor protein (VHL), which also binds to Elongin C and

thereby recruits a ubiquitin ligase complex that targets HIF-1a

for ubiquitination and proteasomal degradation [10,11]. Under

hypoxic conditions, the rate of hydroxylation and ubiquitination

declines, resulting in accumulation of HIF-1a [12]. Immunohis-

tochemical analysis of tumor biopsies has revealed high levels of

HIF-1a in hypoxic but viable tumor cells surrounding areas of

necrosis [13,14].

Genetic alterations in cancer cells increase HIF-1
activity
In the majority of clear-cell renal carcinomas, VHL function is lost,

resulting in constitutive activation of HIF-1 [11]. After re-intro-

duction of functional VHL, renal carcinoma cell lines are no longer

tumorigenic, but can be made tumorigenic by expression of HIF-

2a in which the prolyl residues that are subject to hydroxylation

have been mutated [15,16]. In addition to VHL loss-of-function,

many other genetic alterations that inactivate tumor suppressors
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TABLE 2

Pathophysiological consequences of HIF-1 activation in human
cancer cells

Phenotype Selected HIF-1 target(s)a Refs

Immortalization Telomerase [65,66]

PGM; GPI [67]

Stem cells OCT4 [68,128]

Dedifferentiation ID2 [69]

Genetic instability MSH2; MSH6 [70,129]

Vascularization VEGF [17,71,127]

Metabolism Glucose transporters; glycolytic enzymes [71–73,130]

Pyruvate dehydrogenase kinase 1 [74,75,131]

Carbonic anhydrase IX [132]

Repression of C-MYC/
mitochondrial biogenesis

[76]

Autocrine growth IGF2; TGF-a [77,78]

Invasion/metastasis UPAR; C-MET [79,80,133]

Repression of E-cadherin

(by ZFHX1B)

[81,82]

LOX [83,134]

Treatment failure ABCB1, ABCG2 [84,85,135]

a The listed genes are illustrative not exhaustive. Abbreviations: PGM, phosphoglycerate

mutase; GPI, glucosephosphate isomerase; OCT, octamer-binding protein; ID, inhibitor of

differentiation; MSH, MutS homolog; VEGF, vascular endothelial growth factor; IGF, insulin-
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or activate oncoproteins have been shown to increase the HIF-1

activity in cancer cells through a variety of molecular mechanisms

[20]. In general, these changes serve to increase the basal levels of

HIF-1a in cancer cells, onto which is superimposed the physiolo-

gical response to hypoxia.

Significance of HIF-1a overexpression
Independent of any specific mechanism, HIF-1a overexpression is

associated with increased patient mortality in many different

cancers (Table 1). The basis for this association is the regulation

by HIF-1 of genes that play critical roles in many key aspects of

cancer pathogenesis, including: immortalization, maintenance of

stem cell pools, cellular dedifferentiation, genetic instability, vas-

cularization, metabolic reprogramming, autocrine growth factor

signaling, invasion/metastasis, and treatment failure (Table 2).

The validation of HIF-1 as a therapeutic target in cancer is based

on studies in which genetic manipulations that increase the

expression of HIF-1a or HIF-2a in human cancer cells has been

shown to increase tumor growth, angiogenesis, and metastasis,

whereas genetic manipulations that decrease HIF-1a or HIF-2a

expression result in decreased tumor growth, angiogenesis, and

metastasis in animal models [17,18,58,96,111].

It should be noted, however, that among both immunohisto-

chemical analyses and animal studies, there are exceptions in

which HIF-1a or HIF-2a overexpression is associated with

increased patient survival [19,21,22]. In some of these cases, the
TABLE 1

Clinical consequences of HIF-1a (or HIF-2a) overexpression in
human cancers, by organ

Cancer Associationa Refs

Bladder Mortality, MVDb, tumor grade, TTP [36,37]

Brain Mortality, MVD, tumor grade [35,38,61]

Breast Mortality, MVD, tumor grade, metastasis [39–46]

Cervix (uterus) Mortality, MVD, radiation resistance [47–49]

Colon Invasion, metastasis, MVD [50]

Endometrium (uterus) Mortality, MVD [52]

Esophagus MVD, venous invasion, PDT responsec [25,51]

Head and neck Survival [21,55]

Head and neck Mortality (HIF-2a), MVD [54]

Liver Venous invasion, MVD [56]

Lung (NSCLC) Survival, apoptosis [57]

Lung (NSCLC) Mortality [59]

Oropharynx Mortality, radiation resistance [62]

Ovary Mortalityd, MVD [26]

Pancreas Metastasis, MVD, TNM stage [63,64]

Skin (melanoma) Mortality (HIF-2a) [60]

Stomach (GIST) Mortality, metastasis, MVD [53]

a HIF-1a overexpression is positively associated with indicated parameter unless

otherwise noted (HIF-2a) for association with HIF-2a overexpression.
b Abbreviations: MVD, microvessel density; TTP, time to progression; MVD (DCIS),

microvessel density in ductal carcinoma in situ; PDT, photodynamic therapy; GIST,

gastrointestinal stromal cell tumor; NSCLC, non-small-cell lung carcinoma; TNM, tumor-

node-metastasis.
c Tumors with overexpression of both HIF-1a and BCL2.
d Tumors with both HIF-1a overexpression and mutant p53.

like growth factor; TGF, transforming growth factor; UPAR, urokinase-type plasminogen

activator receptor; ZFHX, zinc finger and homeodomain protein; LOX, lysyl oxidase; ABC,

ATP-binding cassette transporter protein.
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induction of proapoptotic genes by HIF-1 such as BNIP3 and NIX

[23,24] may play an important role in promoting patient survival.

In such cancers, however, there may be a strong selection for the

eventual emergence of clones with increased activity of anti-

apoptotic proteins such as BCL2 [25] or decreased activity of

proapoptotic proteins such as p53 [26] that counteract proapop-

totic consequences of HIF-1a overexpression, while leaving intact

other important properties of HIF-1 such as its ability to promote

angiogenesis and invasion. In clear-cell renal carcinoma,

decreased expression of the proapoptotic BCL2 family members

Bik and Bim [27] and decreased p53 activity [28] may contribute to

the resistance of these cells to apoptosis.

Anticancer agents that inhibit HIF-1
A growing number of anticancer agents have been shown to

inhibit HIF-1 activity. For many of these, the mechanism of action

has been established and involves a reduction in HIF-1a mRNA or

protein levels, HIF-1 DNA-binding activity, or HIF-1-mediated

transactivation of target genes (Table 3). Agents that reduce

HIF-1a protein levels do so by decreasing the rate of HIF-1a

synthesis, increasing the rate of HIF-1a degradation, or both.

In many cancers, mTOR activity is a major determinant of the

rate of HIF-1a protein synthesis. The constitutive activation of

receptor tyrosine kinases (such as HER2neu, BCR-ABL, and EGFR)

and/or the downstream phosphatidylinositol 3-kinase/AKT and

RAS/MAP kinase signal transduction pathways in cancer cells leads

to increased mTOR activity and the induction of HIF-1 activity

[20,86] and the downstream effects on cancer pathogenesis that

are described above. Thus, inhibitors of these pathways result in
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TABLE 3

Anticancer agents that inhibit HIF-1 activity, by mechanism of
action and drug target

I. Decreased HIF-1a mRNA levels: GL331 [100]

II. Decreased HIF-1a protein levels

A. PI3K-AKT-mTOR and RAS-RAF-MEK-ERK pathways

1. BCR-ABL: imatinib/Gleevec [89]

2. EGFR: gefitinib/Iressa, erlotinib/Tarceva, cetuximab/C225 [88]

3. HER2neu: trastuzumab/Herceptin [86,87]

4. mTOR: temsirolimus/CCI-779, everolimus/RAD-001 [86,94,95]

5. Farnesyltransferase: SCH66336 [101]

6. Tyrosine kinase (nonspecific): genistein [109]

7. MEK: PD98059 [104]

8. COX2: NS398, ibuprofen, celecoxib [90]

B. Topoisomerases

1. Topoisomerase I: topotecan [91]

2. Topoisomerase II: NSC 644221 [112]

C. Cyclin-dependent kinases: flavopiridol [99]

D. Microtubule targeting agents: 2-methoxyestradiol, epothilone B,

taxotere [97,121]

E. HSP90: 17-AAG, 17-DMAG, apigenin [30,31,110]

F. Histone deacetylases: LAQ824, FK228 [102,103]

G. Thioredoxin: 1-methylpropyl-2-imidazolyl-disulfide, pleurotin [105]

H. Unknown targets: YC-1, PX-478, berberine, pseudolaric acid B,
bisphenol A, manassantin B1, manassantin A, 4-O-methylsaucerneol,

laurenditerpenol, 103D5R [107,108,113–118]

III. Decreased binding of HIF-1 to DNA: echinomycin, polyamides,

DJ12 [98,119,120]

IV. Decreased HIF-1-mediated transactivation

A. Proteasome: bortezomib [92]

B. Histone deacetylases: SAHA/vorinostat, trichostatin A [136]

C. P300: chetomin [106]

D. Unknown: amphotericin B [93]
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loss of HIF-1 activity and biological consequences such as impaired

tumor vascularization that may contribute significantly to their

therapeutic effect.

mTOR regulates the synthesis of many proteins that are impor-

tant for cancer progression and thus the therapeutic effect of

mTOR inhibitors cannot be attributed solely to their inhibition

of HIF-1a synthesis. That being said, it appears that in some

cancers HIF-1 represents a particularly important target for regula-

tion by mTOR. In a transgenic mouse model of prostatic intrae-

pithelial neoplasia due to prostate-specific expression of activated

AKT, the growth of neoplastic lesions could be blocked by treat-

ment with the mTOR inhibitor RAD-001 and microarray analysis

of gene expression revealed that, of all the mRNAs assayed, a group

encoded by HIF-1 target genes was most significantly upregulated

in transgenic compared to nontransgenic prostate tissue and

down-regulated in RAD-001-treated compared to untreated trans-

genic prostate [94]. In renal cell carcinoma, VHL loss-of-function

sensitizes the cells to growth arrest by the mTOR inhibitor CCI-779

[95], which is correlated with inhibition of HIF-1a mRNA transla-

tion and can be overcome by transfection of an expression vector

encoding HIF-1a mRNA lacking the 50-untranslated region
through which mTOR has been shown to regulate HIF-1a protein

synthesis [86].

Inhibitors of topoisomerases, cyclin-dependent kinases, and

microtubule assembly, heat shock protein 90 (HSP90), histone

deacetylases, and thioredoxin also inhibit HIF-1a protein expres-

sion, although the mechanisms have not been fully delineated,

with the exception of HSP90 inhibitors, which induce HIF-1a

degradation, as described below. Other novel HIF-1 inhibitors that

induce the degradation of HIF-1a protein have been identified,

such as PX-478 and YC-1, but their detailed mechanisms of action

remain to be established [29]. Several natural products, including

berberine, pseudolaric acid B, bisphenol A, manassantin B1, man-

assantin A, 4-O-methylsaucernol, and laurenditerpinol, have been

shown to inhibit HIF-1a protein expression but neither their

mechanism of action nor their anticancer effects in vivo have been

reported.

The chaperone HSP90 interacts with HIF-1a and is required for

HIF-1 transcriptional activity. Inhibitors of HSP90 such as gelda-

namycin and its derivatives 17-allylamino-17-demethoxygeldana-

mycin (17-AAG) and 17-dimethylaminomethylamino-17-

demethoxygeldanamycin (17-DMAG) induce the ubiquitination

and proteasomal degradation of HIF-1a even in the absence of

VHL [30]. The receptor for activated C kinase 1 (RACK1), which

was originally identified as an anchoring protein for activated

protein kinase C but is now recognized as a multifunctional

scaffold protein that plays an important role in diverse biological

processes, competes with HSP90 for binding to HIF-1a [31]. HSP90

inhibition by 17-AAG leads to unopposed RACK1 binding to HIF-

1a, which triggers ubiquitination and proteasomal degradation.

RACK1 binds to Elongin C via an amino acid sequence with

striking similarity to the region of VHL that interacts with Elongin

C. Thus, RACK1 recruits an ubiquitin ligase complex similar to that

which is recruited by VHL, establishing a parallel but O2-indepen-

dent pathway for the proteasomal degradation of HIF-1a [31].

HSP90 inhibitors may be particularly potent anticancer agents

because in addition to its role in promoting HIF-1a stability,

HSP90 is also required to prevent the degradation of many acti-

vated or overexpressed oncoproteins, including receptor tyrosine

kinases and serine/threonine kinases [139]. Both 17-AAG and 17-

DMAG are currently in clinical trials.

Other HIF-1 inhibitors do not affect HIF-1a mRNA or protein

levels but prevent HIF-1 from activating transcription of target

genes. Echinomycin [98], polyamides [119], and DJ12 [120]

accomplish this by blocking the binding of HIF-1 to DNA. Echi-

nomycin preferentially binds to the DNA sequences 50-ACGT-30

and 50-TCGT-30 [98] and thus will compete with HIF-1, which

binds at sites containing the core sequences 50-ACGTG-30 or 50-

GCGTG-30 [126], the latter of which is not a high-affinity site for

echinomycin binding. Given the limited sequence specificity of

echinomycin, it is likely to inhibit the DNA binding of other

transcription factors including C-MYC, which binds to the

sequence 50-CACGTG-30 [98].

Another mechanism by which HIF-1 is inhibited is at the level of

transactivation. The proteasome inhibitor bortezomib has the

paradoxical effect of increasing the levels of HIF-1a protein by

blocking its degradation while at the same time interfering with

the function of the carboxyl-terminal transactivation domain

(TAD-C) of HIF-1a [92]. The activity of TAD-C has been attributed
www.drugdiscoverytoday.com 855
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to the recruitment of the coactivators p300 and CBP, which bind

to HIF-1a under hypoxic conditions, whereas under normoxic

conditions, the O2-dependent hydroxylation of asparagine residue

803 by factor inhibiting HIF-1 (FIH-1) blocks this interaction [122].

Bortezomib was found to have no effect on the interaction of HIF-

1a with p300, so the molecular mechanism by which bortezomib

blocks HIF-1-mediated transcription remains to be established

[92]. The antifungal drug amphotericin B also inhibits HIF-1

transcription through an effect on TAD-C by promoting the

interaction of HIF-1a with FIH-1, leading to increased asparaginyl

hydroxylation and decreased recruitment of p300 [93]. At con-

centrations lower than those required to induce the degradation of

HIF-1a, the histone deacetylase inhibitors suberoylanilide hydro-

xamic acid (SAHA) and trichostatin A inhibit TAD-C function and

p300 interaction by a mechanism that is independent of aspar-

aginyl hydroxylation [136].

HIF-1 activity is also critical for the function of stromal cells that

play important roles in tumorigenesis, including endothelial cells

and macrophages [123,124]. HIF-1 regulates hundreds of genes in

vascular endothelial cells [2] and one of the major effects of

treating endothelial cells with the novel anti-angiogenic agent

endostatin is the inhibition of HIF-1-dependent gene transcription

[125]. Although the molecular mechanisms underlying this obser-

vation remain to be established, it appears that the anticancer

effects of HIF-1 inhibitors may result from effects on both cancer

cells and stromal cells.

Caveat emptor
Although there is a large body of data linking HIF-1 to the

expression of specific target genes that promote key aspects of

cancer progression, there are several important caveats that must

be appreciated. First, among the many hundreds of genes that are

potentially regulated by HIF-1, only a subset of these are under the

control of HIF-1 in any given normal or cancer cell [2,6,32]. Worse

yet, in response to hypoxia or HIF-1a overexpression, the expres-

sion of some HIF-1-regulated genes has been found to increase,

decrease, or remain unchanged depending upon the particular cell

type that is analyzed [32]. This may be due in part to whether HIF-

2a is expressed in the cell in addition to HIF-1a, as HIF-1a and HIF-

2a may have opposite effects on the expression of some genes [33].

Second, although HIF-1 induces the expression of many genes that

promote tumor cell survival, it also can induce the expression of

genes that promote growth arrest [33] or tumor cell death [34]. To

the extent that such gene products are expressed and their activ-

ities not counteracted by other coexpressed proteins, HIF-1a over-

expression may be associated with increased patient survival.

As a result of the complexity of the HIF-1 transcriptome, the

consequences of increasing or decreasing HIF-1 activity within a

given cancer cell cannot be predicted a priori because the net effect

of the particular target genes activated, although generally favor-

ing cancer progression, may in some cases impair cancer cell

proliferation/survival. Even if the entire battery of HIF-1-regulated

genes in the cancer cell could be identified, it would still not be

possible to predict with certainty the consequences of altering HIF-

1 activity. For example, expression of BNIP3 mRNA may be irre-

levant if it is transcribed from a gene containing a mutation that

eliminates the expression of a functional protein. Alternatively,

overexpression of anti-apoptotic BCL2 family members may
856 www.drugdiscoverytoday.com
negate the effect of BNIP3 induction, thus favoring the positive

effects of HIF-1 on tumor metabolism and vascularization. This

dynamic heterogeneity is of course the major obstacle to all efforts

to develop effective cancer therapies. Finally, genetic manipula-

tions that alter HIF-1 activity in cancer cells may not provide an

accurate assessment of the effect of HIF-1 inhibitors, since the

latter will also block HIF-1 in stromal cells, which play important

roles in angiogenesis and other key aspects of cancer biology. It is

important to note that the increase in tumor growth observed in

some experimental models when HIF-1 activity is knocked down

genetically has not been observed in studies involving adminis-

tration of small molecule inhibitors of HIF-1.

Combination therapy
Because of the powerful selection that results in the eventual

emergence of cells resistant to any known anticancer agent, the

administration of multiple agents simultaneously is essential for

the successful treatment of human cancer. Successful treatment of

tuberculosis requires the administration of three antibiotics; suc-

cessful treatment of AIDS requires the administration of three

antiviral agents; and it is not reasonable to expect that the success-

ful treatment of cancer can be accomplished reliably with any

fewer than three anticancer agents. Among patients with tumor

recurrence following treatment with Gleevec, mutations that con-

fer resistance to Gleevec were identified [141]. That this predict-

able finding appeared in a high impact journal illustrates the

continued lack of understanding of the power of mutation and

selection in human cancer. Thus, the use of HIF-1 inhibitors as

anticancer agents must occur within the conceptual framework of

combination therapy. A simple paradigm to consider is the follow-

ing general pathway:
(I) o
ncogene gain-of-function! activation of signal transduc-

tion pathway(s)! HIF-1 activation! downstream gene

expression! pathogenic response.

A specific example is the following common scenario in

breast adenocarcinoma:
(II) H
ER2neu gene amplification! PI3K/AKT/mTOR signa-

ling! HIF-1 activation! expression of VEGF and other

angiogenic cytokines! tumor vascularization.
If we set as our goal the maximal reduction possible in tumor

vascularization with the minimal risk of emergence of a resistant

clone, then it stands to reason that this can best be accomplished

by targeting pathway (II) at multiple sites with some combination

of available inhibitors targeting HER2neu, mTOR, HIF-1, and VEGF/

VEGFR. We currently possess the knowledge of pathways and

some of the requisite targeted agents to test this hypothesis.

Efforts have also been made to investigate whether angiogenesis

inhibitors can improve outcome in cancers that are treated by

radiation therapy [140]. Studies from animal models indicate that

reoxygenation of hypoxic cancer cells following radiation results

in the production of reactive oxygen species that induce HIF-1

activity, leading to the production of VEGF and FGF2, which bind

to their cognate receptors on vascular endothelial cells and pre-

vent radiation-induced apoptosis [135]. However, when animals

were treated with the angiogenesis inhibitor canstatin, the radia-

tion-induced HIF-1 activity resulted in tumor apoptosis rather

than radiation resistance [137]. These findings illustrate the ben-

efits of combined radiation and drug therapy and suggest that, in
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some cancers, elevated HIF-1 activity may be exploited to kill

cancer cells [138].

Conclusion
The greatest obstacle to the establishment of efficacious therapies

for human cancer is the heterogeneity of the disease within a single

individual over time and space, as well as the heterogeneity that

exists between individuals with the same type of cancer. Although

cancer researchhas demonstrated that there are hundredsof genetic

and epigenetic alterations in cancer cells, understanding which of

these changes represent critical therapeutic targets ina given patient

is still a major challenge. Because HIF-1 controls the expression of so
many genes that impact on cancer progression, both in tumor and

stromal cells, it may be an important target for cancer therapy.

However, as for most other candidate drug targets, successful trans-

lation of basic science research into clinical applications will require

new methods for establishing the proper context for administration

of HIF-1 inhibitors, that is selection of an appropriate patient cohort

and multidrug treatment regimen.
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